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Introduction

• Tropospheric ozone is a pollutant and
third most important greenhouse gas,
and therefore poses threats to both
human health and climate.

• Photochemical production from natu-
ral and anthropogenic precursors, and
transport from stratosphere are its ma-
jor sources.

• Inter-hemispherical transport can also
contribute to ozone budget.

• Changes in airmass transport through
different climate modes contribute to
inter-annual variability of tropospheric
ozone.

Surface and tropospheric ozone
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Figure 1: Timeseries of mean vertical ozone profile and surface ozone
at different stations.

Research method

1. Self organising map based cluster-
ing of vertical ozone profiles [1].

2. 15 days backward trajectory with
HYSPLIT.

3. Causal inference using PCMCI al-
gorithm [2].

4. Estimation of long-term trend us-
ing simple and multivariate linear re-
gression and Bayesian dynamic lin-
ear model [3].

5. Estimation of instantaneous radia-
tive forcing (iRF) at the surface us-
ing RRTMG.

Ozone clustering and trajectory
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Figure 2: SOM based clusters of ozone profiles, monthly,
seasonal and timeseries of frequency of occurrences of clus-
ters and seasonwise backward trajectories for McMurdo sta-
tion at 500 meters from ground level for 2016.

Causal inference
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Figure 3: Causal graph for surface ozone at Neumayer.

Ozone trends
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Figure 4: Vertical profile of ozone trend estimated using
Simple and Multivariate linear regression.

Drivers and radiative forcing
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Figure 5: Contribution of different geophysical drivers to
variability of ozone (% of standard deviation of ozone).
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Figure 6: Annual mean timeseries of troposheric ozone col-
umn and corresponding instantaneous radiative forcing at the
surface.

Conclusion

1. Changes in tropopause height modulated by
polar vortex and meridional heat flux control
the variations in ozone profile.

2. Long-term trend is positive in the lower tro-
posphere and UTLS, but negative in mid-
troposphere.

3. Various climate modes (ENSO, QBO and
AAO) have strong influence on tropospheric
ozone variability and long-term trend with the
maximum contribution from QBO.

4. Tropospheric column ozone and surface in-
stanteous radiative forcing due to tropo-
spheric ozone decreased during 1986-1999,
but it has been increasing since 2000 with the
strongest increase during 2000-2011.

5. Changes in residual overturning circulation,
strength of polar vortex and stratosphere-
troposphere exchange induce significant vari-
ability in tropospheric ozone in Antarctica.
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